

Unit 5

Squares and Square Root of Positive Numbers

	Exercise 5.1	
1. Find the squares of the following 2-	digit positive integers.	
(i) 19	(ii) 39	(iii) 59
Solution: To find square of 19	Solution: To find square of 39	Solution: To find square of 59
$19^2 = 19 \times 19$	$39^2 = 39 \times 39$	$59^2 = 59 \times 59$
= 361	= 1,521	= 3,481
(iv) 28	(v) 77	(vi) 78
Solution: To find square of 28	Solution: To find square of 77	Solution: To find square of 78
$28^2 = 28 \times 28$	$77^2 = 77 \times 77$	$78^2 = 78 \times 78$
= 784	= 5,929	= 6,084
(vii) 88	(viii) 89	(ix) 79
Solution: To find square of 88	Solution: To find square of 89	Solution: To find square of 79
$88^2 = 88 \times 88$	$89^2 = 89 \times 89$	$79^2 = 79 \times 79$
= 7,744	= 7,921	= 6,241
2. Find the squares of the following 3-	digit positive integers.	
(i) 312	(ii) 413	(iii) 514
Solution: To find square of 312	Solution: To find square of 413	Solution: To find square of 514
$312^2 = 312 \times 312$	$413^2 = 413 \times 413$	$514^2 = 514 \times 514$
= 97,344	= 170,569	= 264,196
() 219	() 217	(:) 210
(IV) 218 Solution: To find square of 218	(v) 217 Solution: To find square of 217	(VI) 319 Solution: To find square of 319
$218^2 = 218 \times 218$	21/2 = 21/ × 21/	319 ² = 319 × 319
= 47,524	= 47,089	= 101,761
(vii) 888	(viii) 999	(ix) 777
Solution: To find square of 888	Solution: To find square of 999	Solution: To find square of 777
$888^2 = 888 \times 888$	$999^2 = 999 \times 999$	$777^2 = 777 \times 777$
= 788,544	= 998,001	= 603,729

Exercise 5.2

Find the square roots of the following positive integers by prime factorization method. 676

Solution: To calculate square root of 676 find prime factorization of 676.

Prime factorization of $676 = 2 \times 2 \times 13 \times 13$	2	676
Index notation = $2^2 \times 13^2$	2	338
It implies that	13	169
$676 = 2^2 \times 13^2$		13

3

3

729

243

5776

2888

4442.2

2

2

5

3 9 3

Taking square root on both sides

$$\sqrt{676} = \sqrt{2^2 \times 13^2}$$
$$= \sqrt{2^2} \times \sqrt{13^2}$$

Square and square root cancle each other out.

$$= 2 \times 13$$
$$= 26$$

So, the square root of 676 is 26.

729 (ii)

Solution: To calculate square root of 729 find prime factorization of 729. Prime factorization of $729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3$

Index notation =
$$3^2 \times 3^2 \times 3^2$$

It implies that
 $729 = 3^2 \times 3^2 \times 3^2$

Taking square root on both sides

$$\frac{3}{\sqrt{729}} = \sqrt{3^2 \times 3^2 \times 3^2}$$
$$= \sqrt{3^2} \times \sqrt{3^2} \times \sqrt{3^2}$$

Square and square root cancle each other out.

$$= 3 \times 3 \times$$

= 27

So, the square root of 729 is 27.

5776 (iii)

Solution: To calculate square root of 5776 find prime factorization of 5776. Prime factorization of $5776 = 2 \times 2 \times 2 \times 2 \times 19 \times 19$

3

Index notation = $2^2 \times 2^2 \times 19^2$

It implies that

es that	2	1
$5776 = 2^2 \times 2^2 \times 19^2$	2	7
Taking square root on both sides	10	2
$\sqrt{5776} = \sqrt{2^2 \times 2^2 \times 19^2}$	19	3
Publishing House		1
$=\sqrt{2^2}\times\sqrt{2^2}\times\sqrt{19^2}$		

Square and square root cancle each other out.

$$= 2 \times 2 \times 19$$

So, the square root of 5776 is 76.

(iv) 50625

50625 Solution: To calculate square root of 50625 find prime factorization of 50625. 5 10125 Prime factorization of $50625 = 5 \times 5 \times 5 \times 5 \times 3 \times 3 \times 3 \times 3$ 5 2025 Index notation = $5^2 \times 5^2 \times 3^2 \times 3^2$ 5 405 It implies that 3 81 $50625=5^2\times5^2\times3^2\times3^2$ 3 27 Taking square root on both sides

 $\sqrt{50625} = \sqrt{5^2 \times 5^2 \times 3^2 \times 3^2}$ $=\sqrt{5^2}\times\sqrt{5^2}\times\sqrt{3^2}\times\sqrt{3^2}$

Square and square root cancle each other out.

 $= 5 \times 5 \times 3 \times 3$

So, the square root of 50625 is 225.

(v) 441

Solution: To calculate square root of 441 find prime factorization of 441. Pri

me factorization	of 441	=3 >	× 3	$\times 7$	\times	7

Index notation = $3^2 \times 7^2$

It implies that

11

121

 $441 = 3^2 \times 7^2$ Taking square root on both sides

$$\sqrt{441} = \sqrt{3^2 \times 7^2}$$
$$= \sqrt{3^2} \times \sqrt{7^2}$$

Square and square root cancle each other out

$$=3 \times 7$$

= 21

So, the square root of 441 is 21.

(vi) 2500

Solution: To calculate square root of 2500 find prime factorization of 2500. Prime factorization of $2500 = 2 \times 2 \times 5 \times 5 \times 5 \times 5$

Prime factorization of $2500 = 2 \times 2 \times 5 \times 5 \times 5 \times 5$	2	2500
Index notation = $2^2 \times 5^2 \times 5^2$	2	1250
It implies that $2500 - 2^2 \times 5^2 \times 5^2$	5	625
Taking square root on both sides	5	125
$\sqrt{2500} = \sqrt{2^2 \times 5^2 \times 5^2}$	5	25
		5
= 12 ² × 15 ² Publishing House		
Square and square root cancle each other out.		

$$= 2 \times 5 \times 5$$

$$= 50$$

So, the square root of 2500 is 50.

2. Find the square roots of the following fractions by prime factorization.

64 (i) 121 2 64 2 32 2 16 2 8 **Solution:** To calculate square root of $\frac{64}{121}$ find prime factorization of numerator and denominator separately. Prime factorization of $64 = 2 \times 2 \times 2 \times 2 \times 2 \times 2$ 2 4 Index notation = $2^2 \times 2^2 \times 2^2$ 2

Prime factorization of $121 = 11 \times 11$ Index notation = 11^2

It implies that

$$\frac{64}{121} = \frac{2^2 \times 2^2 \times 2^2}{11^2}$$

Taking square root on both sides

$$\sqrt{\frac{64}{121}} = \sqrt{\frac{2^2 \times 2^2 \times 2^2}{11^2}} = \frac{\sqrt{2^2} \times \sqrt{2^2} \times \sqrt{2^2}}{\sqrt{11^2}}$$

Square and square root cancle each other out.

$$=\frac{2\times2\times2}{11}$$
$$=\frac{8}{11}$$

So, the square root of $\frac{64}{121}$ is $\frac{8}{11}$.

 $(ii) \qquad \frac{36}{169}$

Solution: To calculate square root of $\frac{36}{169}$ find prime factorization of numerator and denominator separately.

Prime factorization of $36 = 2 \times 2 \times 3 \times 3$	2	36	13	160
Index notation = $2^2 \times 3^2$		10	15	107
Prime factorization of $169 - 13 \times 13$	2	18		13
Index potentiar 12^2	3	9		
Index holation = 13^{-1}		/		
It implies that		3		
$2c - 2^2 + 2^2$				

 $\frac{36}{169} = \frac{2^2 \times 3^2}{13^2}$ Taking square root on both sides blishing House

$$\sqrt{\frac{36}{169}} = \sqrt{\frac{2^2 \times 3^2}{13^2}} = \frac{\sqrt{2^2 \times \sqrt{3^2}}}{\sqrt{13^2}}$$

Square and square root cancle each other out

$$=\frac{2\times 3}{13}$$
$$=\frac{6}{13}$$
So, the square root of $\frac{36}{169}$ is $\frac{6}{13}$.

(iii) $\frac{81}{144}$

Solution: To calculate square root of $\frac{81}{144}$ find prime factorization of numerator and denominator separately. Prime factorization of $81 = 3 \times 3 \times 3 \times 3$ Index notation = $3^2 \times 3^2$ Prime factorization of $144 = 2 \times 2 \times 2 \times 2 \times 3 \times 3$ $\begin{array}{r}
 2 & 144 \\
 \hline
 2 & 72 \\
 \hline
 2 & 36 \\
 \hline
 2 & 18 \\
 3 & 9 \\
 \end{array}$ Index notation = $2^2 \times 2^2 \times 3^2$ It implies that $\frac{81}{144} = \frac{3^2 \times 3^2}{2^2 \times 2^2 \times 3^2}$ Taking square root on both sides $\sqrt{\frac{81}{144}} = \sqrt{\frac{3^2 \times 3^2}{2^2 \times 2^2 \times 3^2}}$ $=\frac{\sqrt{3^2}\times\sqrt{3^2}}{\sqrt{2^2}\times\sqrt{2^2}\times\sqrt{3^2}}$ Square and square root cancle each other out. $=\frac{3\times3}{2\times2\times3}=\frac{9}{12}$ So, the square root of $\frac{81}{144}$ is $\frac{9}{12}$. $1\frac{63}{81}$ (iv) **Solution**: Firstly, convert mixed number into improper fraction. $1\frac{63}{81} = \frac{144}{81}$ 144
 2
 72

 2
 36

 2
 18
 To calculate square root of 144 find prime factorization of numerator and 3 27 3 9 3 denominator separately. Prime factorization of $144 = 2 \times 2 \times 2 \times 2 \times 3 \times 3$ Index notation = $2^2 \times 2^2 \times 3^2$ Prime factorization of $81 = 3 \times 3 \times 3 \times 3$ Publishing House Index notation = $3^2 \times 3^2$ It implies that $1\frac{63}{81} = \frac{144}{81} = \frac{2^2 \times 2^2 \times 3^2}{3^2 \times 3^2}$ Taking square root on both sides $\sqrt{\frac{144}{81}} = \sqrt{\frac{2^2 \times 2^2 \times 3^2}{3^2 \times 3^2}}$ $=\frac{\sqrt{2^2}\times\sqrt{2^2}\times\sqrt{3^2}}{\sqrt{3^2}\times\sqrt{3^2}}$ Square and square root cancle each other out. $=\frac{2\times2\times3}{3\times3}=\frac{12}{9}$ So, the square root of $1\frac{63}{81}$ is $\frac{12}{9}$.

 $1\frac{32}{49}$ **(v)** Solution: Firstly, convert mixed number into improper fraction. $1\frac{32}{49} = \frac{81}{49}$ To calculate square root of $\frac{81}{49}$ find prime factorization of numerator and denominator separately. Prime factorization of $81 = 3 \times 3 \times 3 \times 3$
 3
 81
 7
 49

 3
 27
 7
 7

 3
 9
 7
 7
 Index notation = $3^2 \times 3^2$ Prime factorization of $49 = 7 \times 7$ Index notation = 7^2 It implies that $1\frac{32}{49} = \frac{81}{49} = \frac{3^2 \times 3^2}{7^2}$ Taking square root on both sides $\sqrt{\frac{81}{49}} = \sqrt{\frac{3^2 \times 3^2}{7^2}}$ $=\frac{\sqrt{3^2}\times\sqrt{3^2}}{\sqrt{7^2}}$ Square and square root cancle each other out. $=\frac{3\times3}{7}$ $=\frac{9}{7}$ So, the square root of $1\frac{32}{49}$ is $\frac{9}{7}$. $1\frac{57}{64}$ (vi) Solution: Firstly, convert mixed number into improper fraction. $1\frac{57}{64} = \frac{121}{64}$ To calculate square root of $\frac{121}{64}$ find prime factorization of numerator and denominator separately. Prime factorization of $121 = 11 \times 11$ Index notation = 11^2 Prime factorization of $64 = 2 \times 2 \times 2 \times 2 \times 2 \times 2$ $\begin{array}{r}
 \frac{2}{2} & 3_{2} \\
 \frac{2}{16} \\
 \frac{2}{8} \\
 \frac{2}{4} \\
 \frac{4}{2}
 \end{array}$ Index notation = $2^2 \times 2^2 \times 2^2$ It implies that $1\frac{57}{64} = \frac{121}{64} = \frac{11^2}{2^2 \times 2^2 \times 2^2}$

5 25

729

243

3

3 81

3 27

3 9 3 100

50

5

Taking square root on both sides

$$\sqrt{\frac{121}{64}} = \sqrt{\frac{11^2}{2^2 \times 2^2 \times 2^2}} = \frac{\sqrt{11^2}}{\sqrt{2^2} \times \sqrt{2^2} \times \sqrt{2^2}}$$

Square and square root cancle each other out.

$$= \frac{11}{2 \times 2 \times 2}$$
$$= \frac{11}{8}$$
So, the square root of $1\frac{57}{64}$ is $\frac{11}{8}$.

3. Find the square roots of the following decimal numbers by prime factorization method. (i) 7.29

Solution: First of all, convert the decimal number into fraction.

$$7.29 = \frac{729}{100}$$

To calculate square root of $\frac{729}{100}$ find prime factorization of numerator and denominator separately.

Prime factorization of 729 = $3 \times 3 \times 3 \times 3 \times 3 \times 3$ Index notation = $3^2 \times 3^2 \times 3^2$

Prime factorization of $100 = 2 \times 2 \times 5 \times 5$ Index notation $= 2^2 \times 5^2$

It implies that

$$7.29 = \frac{729}{100} = \frac{3^2 \times 3^2 \times 3^2}{2^2 \times 5^2}$$

Taking square root on both sides

$$\sqrt{7.29} = \sqrt{\frac{729}{100}} = \sqrt{\frac{3^2 \times 3^2 \times 3^2}{2^2 \times 5^2}}$$
Publishing House
$$= \frac{\sqrt{3^2} \times \sqrt{3^2} \times \sqrt{3^2}}{\sqrt{2^2} \times \sqrt{5^2}}$$

Square and square root cancle each other out.

$$=\frac{3\times3\times3}{2\times5}=\frac{27}{10}$$
 or 2.7

So, the square root of 7.29 is $\frac{27}{10}$ or 2.7.

(ii) **3.24**

Solution: First of all, convert the decimal number into fraction.

$$3.24 = \frac{324}{100}$$

To calculate square root of $\frac{324}{100}$ find prime factorization of numerator and denominator separately.

Prime factorization of $324 = 2 \times 2 \times 3 \times 3 \times 3 \times 3$	2	324	2	100
Index notation = $2^2 \times 3^2 \times 3^2$	2	162	2	50
Prime factorization of $100 = 2 \times 2 \times 5 \times 5$ Index notation = $2^2 \times 5^2$	3	81	5	25
It implies that	3	27		5
2.24 324 $2^2 \times 3^2 \times 3^2$	3	9		
$3.24 = \frac{100}{100} = \frac{2^2 \times 5^2}{2^2 \times 5^2}$		3		

Taking square root on both sides

$$\sqrt{3.24} = \sqrt{\frac{324}{100}} = \sqrt{\frac{2^2 \times 3^2 \times 3^2}{2^2 \times 5^2}}$$
$$= \frac{\sqrt{2^2} \times \sqrt{3^2} \times \sqrt{3^2}}{\sqrt{2^2} \times \sqrt{5^2}}$$

Square and square root cancle each other out.

$$=\frac{2\times3\times3}{2\times5}=\frac{18}{10} \text{ or } 1.8$$

So, the square root of 3.24 is $\frac{18}{10}$ or 1.8.

(iii) **4.41**

Solution: First of all, convert the decimal number into fraction.

$$4.41 = \frac{441}{100}$$

To calculate square root of $\frac{441}{100}$ find prime factorization of numerator and denominator separately.

Prime factorization of $441 = 3 \times 3 \times 7 \times 7$

Index notation = $3^2 \times 7^2$		441	2	100
Prime factorization of $100 = 2 \times 2 \times 5 \times 5$	$\overline{3}$	147	2	50
Index notation = $2^2 \times 5^2$	7	49	5	25
It implies that PI	ublishing Hou	<u>5</u> e		5

 $4.41 = \frac{441}{100} = \frac{3^2 \times 7^2}{2^2 \times 5^2}$

Taking square root on both sides

$$\sqrt{4.41} = \sqrt{\frac{441}{100}} = \sqrt{\frac{3^2 \times 7^2}{2^2 \times 5^2}}$$
$$= \frac{\sqrt{3^2} \times \sqrt{7^2}}{\sqrt{2^2} \times \sqrt{5^2}}$$

Square and square root cancle each other out.

$$=\frac{3 \times 7}{2 \times 5} = \frac{21}{10} \text{ or } 2.1$$

So, the square root of 4.41 is $\frac{21}{10}$ or 2.1.

75

(iv) 5.76

Solution: First of all, convert the decimal number into fraction.

$$5.76 = \frac{576}{100}$$

To calculate square root of $\frac{576}{100}$ find prime factorization of numerator and denominator separately.

Prime factorization of $576 = 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3$	2	576	2	2	100
Index notation = $2^2 \times 2^2 \times 2^2 \times 3^2$	2	288	2	2	50
Prime factorization of $100 = 2 \times 2 \times 5 \times 5$	2	144	5	5	25
Index notation = $2^2 \times 5^2$	2	72	·		5
It implies that $576 - 2^2 - 2^2 - 2^2$	2	36		I	
$576 - \frac{576}{2^2 \times 2^2 \times 2^2 \times 3^2}$	2	18			

 $5.76 = \frac{210}{100} = \frac{2102}{2^2 \times 5^2}$

Taking square root on both sides

$$\sqrt{5.76} = \sqrt{\frac{576}{100}} = \sqrt{\frac{2^2 \times 2^2 \times 2^2 \times 3^2}{2^2 \times 5^2}}$$
$$= \frac{\sqrt{2^2} \times \sqrt{2^2} \times \sqrt{2^2} \times \sqrt{3^2}}{\sqrt{2^2} \times \sqrt{5^2}}$$

Squar and square root cancle each other out.

$$=\frac{2 \times 2 \times 2 \times 3}{2 \times 5} = \frac{24}{10}$$
 or 2.4

So, the square root of 5.76 is $\frac{24}{10}$ or 2.4.

(v) **0.81**

Solution: First of all, convert the decimal number into fraction.

$$0.81 = \frac{81}{100}$$

To calculate square root of $\frac{81}{100}$ find prime factorization of numerator and denominator separately.

100

50 25

5

5

 3
 81

 3
 27

 3
 9

It implies that

$$0.81 = \frac{81}{100} = \frac{3^2 \times 3^2}{2^2 \times 5^2}$$

Taking square root on both sides

$$\sqrt{0.81} = \sqrt{\frac{81}{100}} = \sqrt{\frac{3^2 \times 3^2}{2^2 \times 5^2}}$$

5 25

5

2 50

361

Publishing House

$$=\frac{\sqrt{3^2}\times\sqrt{3^2}}{\sqrt{2^2}\times\sqrt{5^2}}$$

Square and square root cancle each other out.

$$=\frac{3\times3}{2\times5}=\frac{9}{10}$$
 or 0.9

So, the square root of 0.81 is $\frac{9}{10}$ or 0.9.

(vi) 3.61

Solution: First of all, convert the decimal number into fraction.

$$3.61 = \frac{361}{100}$$

To calculate square root of $\frac{361}{100}$ find prime factorization of numerator and denominator separately.

Prime factorization of $361 = 19 \times 19$ Index notation = 19^2

Prime factorization of $100 = 2 \times 2 \times 5 \times 5$ Index notation $= 2^2 \times 5^2$

It implies that

 $3.61 = \frac{361}{100} = \frac{19^2}{2^2 \times 5^2}$

Taking square root on both sides

$$\sqrt{3.61} = \sqrt{\frac{361}{100}} = \sqrt{\frac{19^2}{2^2 \times 5^2}} = \frac{\sqrt{19^2}}{\sqrt{2^2} \times \sqrt{5^2}}$$

Square and square root cancle each other out.

$$=\frac{19}{2\times5}=\frac{19}{10}$$
 or 1.9

So, the square root of 3.61 is $\frac{19}{10}$ or 1.9.

Exercise 5.3

1. The length of the side of a square is 12 *cm*. Find the area of the square.

Solution: Given that:

Length of side of square = 12 cm

As we know that

Area of square = Length \times Length

$$=$$
 (Length)

$$=(12 \ cm)^2$$

$$= 12 \times 12 \ cm^2$$

$$= 144 \ cm^2$$

Hence, the area of given square is 144 cm².

2. If the area of a square is 169 cm^2 , find the length of the side of the square.

Solution: Given that:

Area of square = $169 \ cm^2$	
As we know that	

Area of square = $(\text{Length})^2$

 $169 \ cm^2 = (\text{Length})^2$

Taking square root on both sides $\sqrt{2}$

$$\sqrt{169 \, cm^2} = \sqrt{(\text{Length})^2}$$

 $\sqrt{(13)^2 \, cm^2} = \sqrt{(\text{Length})^2}$
 $13 \, cm = \text{Length}$

Hence, the length of side of given square is 13 cm.

3. 64 people are standing in rows in this manner that the number of rows is equal to the number of people in a row. Find the number of people in each row.

Solution: Given that:

	64		
We have to find the number of people in each row in such a way that number of people $\frac{1}{2}$	32		
and number of rows are same. So, we will calculate square root of 64. $\frac{-}{2}$	16		
Prime factorization of $64 = 2 \times 2 \times 2 \times 2 \times 2 \times 2$			
Index notation = $2^2 \times 2^2 \times 2^2$	0		
$\sqrt{64} = \sqrt{2^2 \times 2^2 \times 2^2}$	4		
Squar and square root cancle each other out.			
$=2\times2\times2$			
= 8			
Hence, 8 people are stand in 8 rows.			
4. If the area of a square is 2.89 cm ² , find the length of the side of the square. Solution: Given that: Area of square = 2.89 cm ² As we know that, Area of square = (Length) ² 2.89 cm ² = (Length) ² Taking square root on both sides $\sqrt{2.89 cm^2} = \sqrt{(Length)^2}$ $\sqrt{\frac{289}{100} cm^2} = \sqrt{(Length)^2}$ $\sqrt{\frac{289}{100} cm^2} = \sqrt{(Length)^2}$ $\sqrt{\frac{177^2}{(10)^2} cm^2} = \sqrt{(Length)^2}$ $\frac{17}{10} cm = \text{Length}$ 1.7 cm = Length Hence, the length of side of given square is 1.7 cm.			

Review Exercise 5

1.	Choose the correct of (i). The last digit of a	ption.	ect square	of nositive in	teger canr	not he		
	(a) 1	(b)	9	(c)	6	(d) 2		
	(ii) The last digit of a	ny peri	fect square	of positive in	nteger can	be:		
	(a) 0	(b)	3	(c)	7	(d) 8		
	144							
	$(\text{iii}) \sqrt{\frac{2+1}{121}} = \cdots$							
	(a) $\frac{12}{12}$	(b)	11	(c)	4	(d) $\frac{12}{12}$		
	$(a) \frac{11}{11}$	(0)	12	(0)	3	$\frac{(u)}{11}$		
	(iv) $\sqrt{1.69} = \cdots$							
	(a) <u>1.39</u>	(b)	1.6	(c)	1.9	(d) 1.3		
	(v) $\sqrt{640000} = \cdots$							
	(a) 80	(b)	800	(c)	8000	(d) 80000		
2	Find the generation of	of the	fallarrin a f	ha ati ana ha a		wing tion woth a d		
2.	ring the square root	l of the	lonowing I	ractions by p	orime facto	orization method.		
	(i) $\frac{61}{101}$							
	121		01					
	Solution: To calculate	square	root of $\frac{81}{121}$	find prime fa	actorization	n of numerator and denom	inator separately.	
	Prime factorization of	81 = 3 >	$< 3 \times 3 \times 3$					
	Index notati	on $= 3^2$	$\times 3^2$			3 81	11 121	
	Prime factorization of	121 = 1	1×11			3 27	11	
	Index nota	tion $= 1$	1 ²			3 9		
	It implies that					3		
		81 3	$3^{2} \times 3^{2}$, i		
		$\frac{01}{121} = \frac{1}{2}$	11^2					
	Taking square root on both sides							
	81 $3^2 \times 3^2$							
		$\sqrt{\frac{1}{121}} =$	$=\sqrt{\frac{1}{11^2}}$	Pı	ublish	ning House		
			$\sqrt{3^2} \times \sqrt{3^2}$	2		ing nouse		
		=	$\frac{\sqrt{3}}{\sqrt{11^2}}$	_				
	:	Square	and square	root cancle e	ach other o	out.		
			3×3					
		=	11					
			0					
		=	7					
		61	11 o					
	So, the square root of	$\frac{04}{121}$ is $\frac{1}{121}$	$\frac{0}{1}$.					
	49							
	$(\mathbf{n}) \qquad \overline{100}$							
	Solution: To calculate	square	root of $\frac{49}{100}$	- find prime f	actorization	n of numerator and denom	inator separately.	

Prime factorization of $49 = 7 \times 7$ Index notation = 7 ² Prime factorization of $100 = 2 \times 2 \times 5 \times 5$ Index notation = 2 ² × 5 ² It implies that $\frac{49}{100} = \frac{7^2}{2^2 \times 5^2}$ Taking square root on both sides $\sqrt{49} = \sqrt{7^2}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\sqrt{100} = \sqrt{2^2 \times 5^2}$ $= \frac{\sqrt{7^2}}{\sqrt{2^2} \times \sqrt{5^2}}$		
Square and square root cancle each other out $= \frac{7}{2 \times 5}$ $= \frac{7}{10}$ So, the square root of $\frac{49}{100}$ is $\frac{7}{10}$. (iii) $\frac{144}{169}$		
Solution: To calculate square root of $\frac{144}{169}$ find prime factorization of Prime factorization of $144 = 2 \times 2 \times 2 \times 2 \times 3 \times 3$ Index notation = $2^2 \times 2^2 \times 3^2$ Prime factorization of $169 = 13 \times 13$	of numerator and denominator separatel	у.
Index notation = 13^2 It implies that $\frac{144}{169} = \frac{2^2 \times 2^2 \times 3^2}{13^2}$ Publishi Taking square root on both sides $\sqrt{144}$ $\sqrt{2^2 \times 2^2 \times 3^2}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\sqrt{\frac{144}{169}} = \sqrt{\frac{2 \times 2 \times 3}{13^2}} = \frac{\sqrt{2^2} \times \sqrt{2^2} \times \sqrt{3^2}}{\sqrt{13^2}}$		
Square and square root cancle each other out. $=\frac{2 \times 2 \times 3}{13}$ $=\frac{12}{13}$ So, the square root of $\frac{144}{169}$ is $\frac{12}{13}$.		

(iv) $\frac{36}{25}$

Solution: To calculate square root of $\frac{36}{25}$ find prime factorization of numerator and denominator separately. Prime factorization of $36 = 2 \times 2 \times 3 \times 3$ Index notation $= 2^2 \times 3^2$ Prime factorization of $25 = 5 \times 5$ Index notation $= 5^2$ $\frac{2}{36}$ $\frac{2}{36}$ $\frac{5}{5}$ $\frac{5}{5}$

It implies that

$$\frac{36}{25} = \frac{2^2 \times 3^2}{5^2}$$

Taking square root on both sides

$$\sqrt{\frac{36}{25}} = \sqrt{\frac{2^2 \times 3^2}{5^2}}$$
$$= \frac{\sqrt{2^2} \times \sqrt{3^2}}{\sqrt{5^2}}$$

Square and square root cancle each other out.

$$= \frac{6}{5}$$

So, the square root of $\frac{36}{25}$ is $\frac{6}{5}$.
(v) $\frac{625}{5}$

 $(\mathbf{v}) \qquad \frac{\mathbf{o}\mathbf{2}\mathbf{v}}{\mathbf{196}}$

Solution: To calculate square root of $\frac{625}{196}$ find prime factorization of numerator and denominator separately.

Publish 5 625 0us 2 196 5 125 2 98 5 25 7 49

Prime factorization of $625 = 5 \times 5 \times 5 \times 5$ Index notation $= 5^2 \times 5^2$ Prime factorization of $196 = 2 \times 2 \times 7 \times 7$ Index notation $= 2^2 \times 7^2$

It implies that

$$\frac{525}{196} = \frac{5^2 \times 5^2}{2^2 \times 7^2}$$

Taking square root on both sides

$$\sqrt{\frac{625}{196}} = \sqrt{\frac{5^2 \times 5^2}{2^2 \times 7^2}}$$
$$= \frac{\sqrt{5^2} \times \sqrt{5^2}}{\sqrt{2^2} \times \sqrt{7^2}}$$

Square and square root cancle each other out.

 $\frac{5\times5}{2\times7}$ $=\frac{25}{14}$ So, the square root of $\frac{625}{196}$ is $\frac{25}{14}$. 256 (vi) 289

Solution: To calculate square root of $\frac{256}{289}$ find prime factorization of numerator and denominator separately. Prime factorization of $256 = 2 \times 2$ 2 256 Index notation = $2^2 \times 2^2 \times 2^2 \times 2^2$ 2 Prime factorization of $289 = 17 \times 17$ 128 Index notation = 17^2 2 64

> 2 32

2

2 8

2 4

16

2

5

It implies that

$$\frac{256}{289} = \frac{2^2 \times 2^2 \times 2^2 \times 2^2}{17^2}$$

Taking square root on both sides

$$\sqrt{\frac{256}{289}} = \sqrt{\frac{2^2 \times 2^2 \times 2^2 \times 2^2}{17^2}}$$
$$= \frac{\sqrt{2^2} \times \sqrt{2^2} \times \sqrt{2^2} \times \sqrt{2^2}}{\sqrt{17^2}}$$

Square and square root cancle each other out.

$$=\frac{2 \times 2 \times 2 \times 2}{17}$$

$$=\frac{16}{17}$$
Publishing House

So, the square ro

3. Find the square roots of the following decimal numbers by prime factorization method. 0.36 (i)

Solution: First of all, convert the decimal number into fraction.

$$0.36 = \frac{36}{100}$$

To calculate square root of $\frac{36}{100}$ find prime factorization of numerator and denominator separately. Prime factorization of $36 = 2 \times 2 \times 3 \times 3$ 36 100 Index notation = $2^2 \times 3^2$ 2 18 50 2 Prime factorization of $100 = 2 \times 2 \times 5 \times 5$ 3 9 25 5 Index notation = $2^2 \times 5^2$

ΛZ

100

5

2 50

5 25

625

125

25

5 5 5

It implies that

$$0.36 = \frac{36}{100} = \frac{2^2 \times 3^2}{2^2 \times 5^2}$$

Taking square root on both sides

$$\sqrt{0.36} = \sqrt{\frac{36}{100}} = \sqrt{\frac{2^2 \times 3^2}{2^2 \times 5^2}} = \frac{\sqrt{2^2} \times \sqrt{3^2}}{\sqrt{2^2} \times \sqrt{5^2}}$$

Square and square root cancle each other out.

$$=\frac{2\times3}{2\times5}$$
$$=\frac{6}{10} \text{ or } 0.6$$

So, the square root of 0.36 is $\frac{6}{10}$ or 0.6.

(ii) 6.25

Solution: First of all, convert the decimal number into fraction.

$$6.25 = \frac{625}{100}$$

To calculate square root of $\frac{625}{100}$ find prime factorization of numerator and denominator separately.

Prime factorization of $625 = 5 \times 5 \times 5 \times 5$ Index notation $= 5^2 \times 5^2$ Prime factorization of $100 = 2 \times 2 \times 5 \times 5$ Index notation $= 2^2 \times 5^2$

It implies that

$6.25 - 625 - 5^2 \times 5^2$	
$0.23 - \frac{100}{100} = \frac{1}{2^2 \times 5^2}$	

Taking square root on both sides Publishing House

$$\sqrt{6.25} = \sqrt{\frac{625}{100}} = \sqrt{\frac{5^2 \times 5^2}{2^2 \times 5^2}} = \frac{\sqrt{5^2} \times \sqrt{5^2}}{\sqrt{2^2} \times \sqrt{5^2}}$$

Square and square root cancle each other out.

$$=\frac{5\times5}{2\times5}$$
$$=\frac{25}{10} \text{ or } 2.5$$

So, the square root of 6.25 is $\frac{25}{10}$ or 2.5.

(iii) **2.89**

Solution: First of all, convert the decimal number into fraction.

$$2.89 = \frac{289}{100}$$

To calculate square root of $\frac{289}{100}$ find prime factorization of numerator and denominator separately.

Prime factorization of
$$289 = 17 \times 17$$

Index notation = 17^2
Prime factorization of $100 = 2 \times 2 \times 5 \times 5$
Index notation = $2^2 \times 5^2$

It implies that

$$2.89 = \frac{289}{100} = \frac{17^2}{2^2 \times 5^2}$$

Taking square root on both sides

$$\sqrt{2.89} = \sqrt{\frac{289}{100}} = \sqrt{\frac{17^2}{2^2 \times 5^2}} = \frac{\sqrt{17^2}}{\sqrt{2^2} \times \sqrt{5^2}}$$

Square and square root cancle each other out.

$$=\frac{17}{2\times5}$$
$$=\frac{17}{10} \text{ or } 1.7$$

So, the square root of 2.89 is $\frac{17}{10}$ or 1.7.

(iv) 1.96

Solution: First of all, convert the decimal number into fraction.

$$1.96 = \frac{196}{100}$$

To calculate square root of $\frac{196}{100}$ find prime factorization of numerator and denominator separately.

Prime factorization of $196 = 2 \times 2 \times 7 \times 7$	2	196	2	100
Index notation = $2^2 \times 7^2$	2	98	2	50
Prime factorization of $100 = 2 \times 2 \times 5 \times 5$	7	49	5	25
Index notation = $2^2 \times 5^2$		7		5

It implies that

$$1.96 = \frac{196}{100} = \frac{2^2 \times 7^2}{2^2 \times 5^2}$$

Taking square root on both sides

$$\sqrt{1.96} = \sqrt{\frac{196}{100}} = \sqrt{\frac{2^2 \times 7^2}{2^2 \times 5^2}}$$

17	289	2	100
	17	2	50
		5	25
			5

$$=\frac{\sqrt{2^2}\times\sqrt{7^2}}{\sqrt{2^2}\times\sqrt{5^2}}$$

Square and square root cancle each other out

$$=\frac{2\times7}{2\times5}$$
$$=\frac{14}{10} \text{ or } 1.4$$

So, the square root of 1.96 is $\frac{14}{10}$ or 1.4.

(v) 2.56

Solution: First of all, convert the decimal number into fraction.

$$2.56 = \frac{256}{100}$$

To calculate square root of $\frac{256}{100}$ find prime factorization of numerator and denominator separately.

Prime factorization of $256 = 2 \times 2$	2	100
Index notation = $2^2 \times 2^2 \times 2^2 \times 2^2$	2	50
Prime factorization of $100 = 2 \times 2 \times 5 \times 5$	5	25
Index notation = $2^2 \times 5^2$ 2 64		5
It implies that $2 32$		5
$256 256 2^2 \times 2^2 \times 2^2 \times 2^2 \qquad 2 16$		
$2.56 = \frac{100}{100} = \frac{2^2 \times 5^2}{2 \times 5^2}$		
Taking square root on both sides $\frac{2}{2}$		
$\sqrt{2.56} = \sqrt{\frac{256}{100}} = \sqrt{\frac{2^2 \times 2^2 \times 2^2 \times 2^2}{2^2 \times 5^2}}$		
$=\frac{\sqrt{2^2}\times\sqrt{2^2}\times\sqrt{2^2}}{\sqrt{2^2}\times\sqrt{5^2}}$		
Square and square root cancle each other out.		
_{2×2×2×2} Publishing Hou	Ise	
$=\frac{2\times2}{2\times5}$		
$=\frac{16}{10}$ or 1.6		
So, the square root of 2.56 is $\frac{16}{10}$ or 1.6.		
(vi) 1.69 Solution: First of all, convert the decimal number into fraction.		
1.60 - 169	2	100 1
$1.09 - \frac{100}{100}$	2	50 -
To calculate square root of $\frac{169}{100}$ find prime factorization of numerator and	5	25
100		5
denominator separately. Prime factorization of $160 = 13 \times 13$	•	
Index notation $= 13 \times 13$		
mack notation – 15		

ΛZ

Prime factorization of
$$100 = 2 \times 2 \times 5 \times 5$$

Index notation $= 2^2 \times 5^2$

It implies that

$$1.69 = \frac{169}{100} = \frac{13^2}{2^2 \times 5^2}$$

Taking square root on both sides

$$\sqrt{1.69} = \sqrt{\frac{169}{100}} = \sqrt{\frac{13^2}{2^2 \times 5^2}} = \frac{\sqrt{13^2}}{\sqrt{2^2} \times \sqrt{5^2}}$$

Square and square root cancle each other out.

$$=\frac{13}{2\times 5}$$
$$=\frac{13}{10} \text{ or } 1.3$$

So, the square root of 1.69 is $\frac{13}{10}$ or 1.3.

4. If the length of a square is 8 *cm*. Find the area of the square. Solution: Given that:

Length of side of square $= 8 \ cm$

As we know that

Area of square = Length \times Length

 $= (\text{Length})^2$ $= (8 \ cm)^2$

$$= 64 \ cm^2$$

Hence, the area of given square is 64 cm^2 .

5. If the area of a square shaped garden is $729 \ cm^2$, find the length of the side of the garden. Solution: Given that:

Area of square shaped garden = $729 \ cm^2$		
As we know that PUDISDING	- 3	729
Area of square = $(\text{Length})^2$	3	243
$729 \ cm^2 = (\text{Length})^2$	3	81
Taking square root on both sides	3	27
$\sqrt{\frac{2}{100}} \sqrt{\frac{2}{100}} \sqrt{(1-1)^2}$	3	9
$\sqrt{729}cm^2 = \sqrt{(\text{Length})}$		3
Prime factorization of $729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3$		
Index notation = $3^2 \times 3^2 \times 3^2$		
$\sqrt{3^2 \times 3^2 \times 3^2 cm^2} = \sqrt{\left(\text{Length}\right)^2}$		
$\sqrt{3^2} \times \sqrt{3^2} \times \sqrt{3^2} \times \sqrt{cm^2} = \sqrt{(\text{Length})^2}$		
$3 \times 3 \times 3 \ cm = \text{Length}$		
27 cm = Length		
Hence, the length of side of the garden is 27 cm.		