

Unit 7 Number Sequences and Patterns

Exercise 7.1

1. Using term to term rule complete the following number sequences.

(i) 10, 20, 30, Solution: Here first term is 10 and second term is obtained by adding 10 in previous term. Using term to term rule: 1^{st} term = 10 2^{nd} term = 10 + 10 = 20 **Rule:** $3^{\rm rd}$ term = 20 + 10 = 30 Any term of the given sequence can be $4^{\text{th}} \text{ term} = 30 + 10 = 40$ obtained by adding 10 in previous term. $5^{\text{th}} \text{ term} = 40 + 10 = 50$ $6^{\text{th}} \text{ term} = 50 + 10 = 60$ So, the complete sequence is 10, 20, 30, 40, 50, 60. (ii) 15, 20, 25, 30, ____, ___, **Solution:** Here first term is 15 and second term is obtained by adding 5 in previous term. Using term to term rule: 1^{st} term = 15 2^{nd} term = 15 + 5 = 20 **Rule:** 3^{rd} term = 20 + 5 = 25 Any term of the given sequence can be $4^{\text{th}} \text{ term} = 25 + 5 = 30$ obtained by adding 5 in previous term. $5^{\text{th}} \text{ term} = 30 + 5 = 35$ $6^{\text{th}} \text{ term} = 35 + 5 = 40$ $7^{\text{th}} \text{ term} = 40 + 5 = 45$ So, the complete sequence is 15, 20, 25, 30, 35, 40, 45. (iii) 7, 9, 11, 13, ____, ___ Solution: Here first term is 7 and second term is obtained by adding 2 in previous term. Using term to term rule: 1^{st} term = 7 2^{nd} term = 7 + 2 = 9 **Rule:** $3^{\rm rd}$ term = 9 + 2 = 11 Any term of the given sequence can be $4^{\text{th}} \text{ term} = 11 + 2 = 13$ obtained by adding 2 in previous term. $5^{\text{th}} \text{ term} = 13 + 2 = 15$ $6^{\text{th}} \text{ term} = 15 + 2 = 17$ $7^{\text{th}} \text{ term} = 17 + 2 = 19$ So, the complete sequence is 7, 9, 11, 13, 15, 17, 19. (iv) 12, 15, 18, 21, ____, ___ • **Solution:** Here first term is 12 and second term is obtained by adding 3 in previous term. Using term to term rule: 1^{st} term = 12 2^{nd} term = 12 + 3 = 15**Rule:** $3^{\rm rd}$ term = 15 + 3 = 18Any term of the given sequence can be $4^{\text{th}} \text{ term} = 18 + 3 = 21$ obtained by adding 3 in previous term. $5^{\text{th}} \text{ term} = 21 + 3 = 24$ $6^{\text{th}} \text{ term} = 24 + 3 = 27$ $7^{\text{th}} \text{ term} = 27 + 3 = 30$ So, the complete sequence is 12, 15, 18, 21, 24, 27, 30. **(v)** 4, 8, 12, 16, ____, ___

Solution: Here first term is 4 and second term is obtained by adding 4 in previous term. Using term to term rule:

 $1^{st} term = 4$ $2^{nd} term = 4 + 4 = 8$ $3^{rd} term = 8 + 4 = 12$ $4^{th} term = 12 + 4 = 16$ $5^{th} term = 16 + 4 = 20$ $6^{th} term = 20 + 4 = 24$ $7^{th} term = 24 + 4 = 28$ So, the complete sequence is 4, 8, 12, 16, 20, 24, 28.

Rule:

Any term of the given sequence can be obtained by adding 4 in previous term.

(vi) 4, 16, 64, ____, ___,

Solution: Here first term is 4 and second term is obtained by multiplying previous term by 4. Using term to term rule:

 $1^{st} \text{ term} = 4$ $2^{nd} \text{ term} = 4 \times 4 = 16$ $3^{rd} \text{ term} = 16 \times 4 = 64$ $4^{th} \text{ term} = 64 \times 4 = 256$ $5^{th} \text{ term} = 256 \times 4 = 1024$ $6^{th} \text{ term} = 1024 \times 4 = 4096$ So, the complete sequence is 4, 16, 64, 256, 1024, 4096.

Rule: Any te

Any term of the given sequence can be obtained by multiplying previous term by 4.

(vii) 3, 9, 27, , ,

Solution: Here first term is 3 and second term is obtained by multiplying previous term by 3. Using term to term rule:

 $1^{st} term = 3$ $2^{nd} term = 3 \times 3 = 9$ $3^{rd} term = 9 \times 3 = 27$ $4^{th} term = 27 \times 3 = 81$ $5^{th} term = 81 \times 3 = 243$ $6^{th} term = 243 \times 3 = 729$

Rule:

Any term of the given sequence can be obtained by multiplying previous term by 3.

So, the complete sequence is 3, 9, 27, <u>81, 243, 729.</u>

(viii) 1, 4, 7, 10, ____, ___,

Solution: Here first term is 1 and second term is obtained by adding 3 in previous term. Using term to term rule: 1^{st} term = 1

 $2^{nd} \text{ term} = 1 + 3 = 4$ $3^{rd} \text{ term} = 4 + 3 = 7$ $4^{th} \text{ term} = 7 + 3 = 10$ $5^{th} \text{ term} = 10 + 3 = 13$ $6^{th} \text{ term} = 13 + 3 = 16$ $7^{th} \text{ term} = 16 + 3 = 19$

Rule:

Any term of the given sequence can be obtained by adding 3 in previous term.

2. Find the 16th term of the sequence below by position to term rule.

5, 10, 15, 20, ...

So, the complete sequence is 1, 4, 7, 10, <u>13, 16, 19.</u>

Solution: Using position to term rule make a table as given below.

Position	Terms of the sequence
1	5
2	10
3	15
4	20
•	•
•	•

Here, we can easily see that if we multiply the position of any term by 5 we will get the term of the sequence. So, for 16^{th} term

$$16 \times 5 = 80$$

Hence, 16th term of the given sequence is 80.

3. Find the 19th term of the following sequence by position to term rule: 8, 16, 24, 32, ...

Solution: Using position to term rule make a table as given below.

v	
Position	Terms of the sequence
1	8
2	16
3	24
4	32
	•

Here, we can easily see that if we multiply the position of any term by 8 we will get the term of the sequence. So, for 19th term

$19 \times 8 = 152$

Hence, 19th term of the given sequence is 152.

4. Find the 10th term of the following sequence by position to term rule:

5, 25, 125, ...

Solution: Using position to term rule make a table

	Position	Terms of the sequence
	1	$5 = 5^1$
	2	$25 = 5^2$
	3	$125 = 5^3$
INT		TIONAL
	• Pi	ublishing House

Here, we can easily see that if we take the position of the term as the power of 5 we will get the term of the sequence. So, for 10^{th} term

 $5^{10} = 9,765,625$

Hence, 10th term of the given sequence is 9,765,625.

5. Find the 12th term of the following sequence by position to term rule:

3, 9, 27, 81, ...

Solution: Using position to term rule make a table

Position	Terms of the sequence
1	$3 = 3^1$
2	$9 = 3^2$
3	$27 = 3^3$
4	$81 = 3^4$
•	
•	

Here, we can easily see that if we take the position of the term as the power of 3 we will get the term of the sequence. So, for 12^{th} term

$3^{12} = 531,441$

Hence, 12th term of the given sequence is 531,441.

Exercise 7.2

1. Construct the sequence whose n^{th} term is given below:

(i) $a_n = 2^{n+1}$

Solution: To construct the required sequence put n = 1, 2, 3, 4, ... in $a_n = 2^{n+1}$

Values of n	Terms of required sequence
For $n = 1$	$2^{1+1} = 2^2 = 4$
For $n = 2$	$2^{2+1} = 2^3 = 8$
For $n = 3$	$2^{3+1} = 2^4 = 16$
For $n = 4$	$2^{4+1} = 2^5 = 32$
For $n = 5$	$2^{5+1} = 2^6 = 64$

Hence, the required sequence is 4, 8, 16, 32, 64, ...

(ii) $a_n = 5n - 3$

Solution: To construct the required sequence put n = 1, 2, 3, 4, ... in $a_n = 5n - 3$

Values of n	Terms of required sequence
For $n = 1$	5(1) - 3 = 5 - 3 = 2
For $n = 2$	5(2) - 3 = 10 - 3 = 7
For $n = 3$	5(3) - 3 = 15 - 3 = 12
For $n = 4$	5(4) - 3 = 20 - 3 = 17
For $n = 5$	5(5) - 3 = 25 - 3 = 22

Hence, the required sequence is 2, 7, 12, 17, 22, ...

(iii) $a_n = 5n + 3$

Solution: To construct the required sequence put n = 1, 2, 3, 4, ... in $a_n = 5n + 3$

-	
Values of n	Terms of required sequence
For $n = 1$	5(1) + 3 = 5 + 3 = 8
For $n = 2$	5(2) + 3 = 10 + 3 = 13 OUSE
For $n = 3$	5(3) + 3 = 15 + 3 = 18
For $n = 4$	5(4) + 3 = 20 + 3 = 23
For $n = 5$	5(5) + 3 = 25 + 3 = 28

Hence, the required sequence is 8, 13, 18, 23, 28, ...

(iv) $a_n = n^2 + 1$

Solution: To construct the required sequence put n = 1, 2, 3, 4, ... in $a_n = n^2 + 1$

1	1 1 , , , , ,
Values of n	Terms of required sequence
For $n = 1$	$(1)^2 + 1 = 1 + 1 = 2$
For $n = 2$	$(2)^2 + 1 = 4 + 1 = 5$
For $n = 3$	$(3)^2 + 1 = 9 + 1 = 10$
For $n = 4$	$(4)^2 + 1 = 16 + 1 = 17$
For $n = 5$	$(5)^2 + 1 = 25 + 1 = 26$

Hence, the required sequence is 2, 5, 10, 17, 26, ...

(v) $a_n = 2n^2 - 3$

Solution: To construct the required sequence put n = 1, 2, 3, 4, ... in $a_n = 2n^2 - 3$

Values of n	Terms of required sequence
For $n = 1$	$2(1)^2 - 3 = 2(1) - 3 = 2 - 3 = -1$
For $n = 2$	$2(2)^2 - 3 = 2(4) - 3 = 8 - 3 = 5$
For $n = 3$	$2(3)^2 - 3 = 2(9) - 3 = 18 - 3 = 15$
For $n = 4$	$2(4)^2 - 3 = 2(16) - 3 = 32 - 3 = 29$
For $n = 5$	$2(5)^2 - 3 = 2(25) - 3 = 50 - 3 = 47$

Hence, the required sequence is -1, 5, 15, 29, 47, ...

$(vi) \qquad a_n = 3n+1$

Solution: To construct the required sequence put n = 1, 2, 3, 4, ... in $a_n = 3n + 1$

Values of n	Terms of required sequence
For $n = 1$	3(1) + 1 = 3 + 1 = 4
For $n = 2$	3(2) + 1 = 6 + 1 = 7
For $n = 3$	3(3) + 1 = 9 + 1 = 10
For $n = 4$	3(4) + 1 = 12 + 1 = 13
For $n = 5$	3(5) + 1 = 15 + 1 = 16

Hence, the required sequence is 4, 7, 10, 13, 16, ...

(vii)
$$a_n = n^{(n+1)}$$

Solution: To construct the required sequence put n = 1, 2, 3, 4, ... in $a_n = n^{(n+1)}$

Values of n	Terms of required sequence
For $n = 1$	$(1)^{1+1} = (1)^2 = 1 \times 1 = 1$
For $n = 2$	$(2)^{2+1} = (2)^3 = 2 \times 2 \times 2 = 8$
For $n = 3$	$(3)^{3+1} = (3)^4 = 3 \times 3 \times 3 \times 3 = 81$
For $n = 4$	$(4)^{4+1} = (4)^5 = 4 \times 4 \times 4 \times 4 \times 4 = 1024$
For $n = 5$	$(5)^{5+1} = (5)^6 = 5 \times 5 \times 5 \times 5 \times 5 \times 5 = 15625$

Hence, the required sequence is 1, 8, 81, 1024, 15625, ...

(viii)
$$a_n = \frac{1}{n^{(n+1)}}$$

Solution: To construct the required sequence put n = 1, 2, 3, 4, ... in $a_n = \frac{1}{n^{(n+1)}}$.

Values of n	Terms of required sequence
For $n = 1$	$\frac{1}{(1)^{1+1}} = \frac{1}{(1)^2} = \frac{1}{1} = 1$
For $n = 2$	$\frac{1}{(2)^{2+1}} = \frac{1}{(2)^3} = \frac{1}{8}$
For $n = 3$	$\frac{1}{\left(3\right)^{3+1}} = \frac{1}{\left(3\right)^4} = \frac{1}{81}$
For $n = 4$	$\frac{1}{\left(4\right)^{4+1}} = \frac{1}{\left(4\right)^5} = \frac{1}{1024}$
For $n = 5$	$\frac{1}{\left(5\right)^{5+1}} = \frac{1}{\left(5\right)^6} = \frac{1}{15625}$

Hence, the required sequence is $1, \frac{1}{8}, \frac{1}{81}, \frac{1}{1024}, \frac{1}{15625}, ...$

$(\mathbf{i}\mathbf{x}) \qquad \mathbf{a}_{n} = \mathbf{2}^{n} + \mathbf{n}$

Solution: To construct the required sequence put n = 1, 2, 3, 4, ... in $a_n = 2^n + n$

Values of n	Terms of required sequence
For $n = 1$	$(2)^1 + 1 = 2 + 1 = 3$
For $n = 2$	$(2)^2 + 2 = 4 + 2 = 6$
For $n = 3$	$(2)^3 + 3 = 8 + 3 = 11$
For $n = 4$	$(2)^4 + 4 = 16 + 4 = 20$
For $n = 5$	$(2)^5 + 5 = 32 + 5 = 37$

Hence, the required sequence is 3, 6, 11, 20, 37, ...

(x) $a_n = n^2 + n + 1$

Solution: To construct the required sequence put n = 1, 2, 3, 4, ... in $a_n = n^2 + n + 1$

Values of n	Terms of required sequence
For $n = 1$	$(1)^2 + 1 + 1 = 1 + 2 = 3$
For $n = 2$	$(2)^2 + 2 + 1 = 4 + 3 = 7$
For $n = 3$	$(3)^2 + 3 + 1 = 9 + 4 = 13$
For $n = 4$	$(4)^2 + 4 + 1 = 16 + 5 = 21$
For $n = 5$	$(5)^2 + 5 + 1 = 25 + 6 = 31$

Hence, the required sequence is 3, 7, 13, 21, 31, ...

(xi) $a_n = 2 \cdot 3^{2n}$

Solution: To construct the required sequence put n = 1, 2, 3, 4, ... in $a_n = 2 \cdot 3^{2n}$

Values of n	Terms of required sequence
For $n = 1$	$2 \times 3^{2 \times 1} = 2 \times 3^2 = 2 \times 9 = 18$
For $n = 2$	$2 \times 3^{2 \times 2} = 2 \times 3^4 = 2 \times 81 = 162$
For $n = 3$	$2 \times 3^{2 \times 3} = 2 \times 3^6 = 2 \times 729 = 1458$
For $n = 4$	$2 \times 3^{2 \times 4} = 2 \times 3^8 = 2 \times 6561 = 13122$
For $n = 5$	$2 \times 3^{2 \times 5} = 2 \times 3^{10} = 2 \times 59049 = 118098$

Hence, the required sequence is 18, 162, 1458, 13122, 118098, ...

$(xii) a_n = 5.7^n$

```
Solution: To construct the required sequence put n = 1, 2, 3, 4, ... in a_n = 5 \cdot 7^n
```

^	
Values of n	Terms of required sequence
For $n = 1$	$5 \times 7^1 = 5 \times 7 = 35$
For $n = 2$	$5 \times 7^2 = 5 \times 49 = 245$
For $n = 3$	$5 \times 7^3 = 5 \times 343 = 1715$
For $n = 4$	$5 \times 7^4 = 5 \times 2401 = 12005$
For $n = 5$	$5 \times 7^5 = 5 \times 16807 = 84035$

Hence, the required sequence is 35, 245, 1715, 12005, 84035, ...

2. Shoaib types 30 words on a typewriter on first day, 35 words on second day, 40 words on third day and so on. How many words will he type on 7th day?

Solution: Given that

Shoaib types 30 words on 1^{st} day, 35 words on 2^{nd} day and 40 words on 3^{rd} day.

If we observe, it is a sequence 30, 35, 40, ...

 $1^{st} day = 30$

Hence, Shoaib will type 60 words on 7th day.

3. Wareesha travels on a car first day 20 km, second day 40 km, third day 80 km and so on. How many kilometres will she travel on the car on 5th day?

Solution: Given that

Wareesha travels 20 km on 1^{st} day, 40 km on 2^{nd} day and 80 km on 3^{rd} day.

If we observe, it is a sequence 20, 40, 80, ...

 $1^{st} day = 20 \text{ km}$ $2^{nd} day \qquad 20 \times 2 = 40$ $3^{rd} day \qquad 40 \times 2 = 80$ $4^{th} day \qquad 80 \times 2 = 160$ $5^{th} day \qquad 160 \times 2 = 320$

Hence, Wareesha will travel 320 km on 5th day.

Review Exercise 7

1. Choose the correct option. (i) Twentieth term of the sequence: $2^0 \ 2^1 \ 2^2 \ 2^3$ is

(I)	i wenneth te	rin of the se	quence:	4,4,4	, 4 ,	15		
(a)	2^{20}	(b)	2 ²¹		(c)	2^{19}	(d)	2^{18}
(ii)	9-9=?							
(a)	9	(b)	1		(c)	3	(d)	0
(iii)	The ninth te	erm of the se	quence	8, 16, 24	, 32,	is: ON/		
(a)	72	(b)	64		(c)	80	(d)	88
(iv)	The tenth ter	rm of 15, 20,	25, is	s:	TU	bilsting no	Juse	
(a)	65	(b)	55		(c)	60	(d)	45
(v)	The n th term	of the seque	ence is 2	$x^{n+1} - 1$ th	en the	sequence is:		
(a)	3, 7, 15,				(b)	1, 3, 7, 15,		
(c)	7, 15, 31,				(d)	1, 7, 15,		

2. Find the 10th term of the given sequence by position to term rule 7, 14, 21, Solution: Using position to term rule make a table as given below.

-	
Position	Terms of the sequence
1	7
2	14
3	21
•	
	•

Here, we can easily see that if we multiply the position of any term by 7 we will get the term of the sequence. So, for 10^{th} term: $10 \times 7 = 70$

Hence, the 10^{th} term of the given sequence is 70.

3. Find the 90th term of the given sequence by position to term rule 11, 22, 33, Solution: Using position to term rule make a table as given below.

a duble de given below.				
Position	Terms of the sequence			
1	11			
2	22			
3	33			
•				

Here, we can easily see that if we multiply the position of any term by 11 we will get the term of the sequence. So, for 90^{th} term: $90 \times 11 = 990$

Hence, the 90th term of the given sequence is 990.

4. Find the 100th term of the given sequence by position to term rule 13, 26, 39, 52, Solution: Using position to term rule make a table as given below.

Position	Terms of the sequence
1	13
2	26
3	39
4	52

Here, we can easily see that if we multiply the position of any term by 13 we will get the term of the sequence. So, for 100^{th} term: $100 \times 13 = 1300$

Hence, the 100th term of the given sequence is 1300.

5. Find the 33rd term of the given sequence by position to term rule 15, 30, 45, 60, Solution: Using position to term rule make a table as given below.

Position	Terms of the sequence
	15
2 P	ublishing 30 ouse
3	45
4	60
•	

Here, we can easily see that if we multiply the position of any term by 15 we will get the term of the sequence. So, for 33^{rd} term: $33 \times 15 = 495$

Hence, the 33^{rd} term of the given sequence is 495.

6. Construct the sequence whose nth term is given below:

(i) $a_n = (n+1)^n$

Solution: To construct the required sequence put n = 1, 2, 3, 4, ... in $a_n = (n + 1)^n$

Values of n	Terms of required sequence
For $n = 1$	$(1+1)^1 = 2^1 = 2$
For $n = 2$	$(2+1)^2 = 3^2 = 3 \times 3 = 9$
For $n = 3$	$(3+1)^3 = 4^3 = 4 \times 4 \times 4 = 64$
For $n = 4$	$(4+1)^4 = 5^4 = 5 \times 5 \times 5 \times 5 = 625$
For $n = 5$	$(5+1)^5 = 6^5 = 6 \times 6 \times 6 \times 6 \times 6 = 7776$

Hence, the required sequence is 2, 9, 64, 625, 7776, ...

(ii) $a_n = (n+1)^{n+1} - n^n$

Solution: To construct the required sequence put n = 1, 2, 3, 4, ... in $a_n = (n + 1)^{n+1} - n^n$

Values of n	Terms of required sequence
For $n = 1$	$(1+1)^{1+1} - (1)^1 = (2)^2 - 1 = 4 - 1 = 3$
For $n = 2$	$(2+1)^{2+1} - (2)^2 = (3)^3 - 4 = 27 - 4 = 23$
For $n = 3$	$(3+1)^{3+1} - (3)^3 = (4)^4 - 27 = 256 - 27 = 229$
For $n = 4$	$(4+1)^{4+1} - (4)^4 = (5)^5 - 256 = 3125 - 256 = 2869$
For $n = 5$	$(5+1)^{5+1} - (5)^5 = (6)^6 - 3125 = 46656 - 3125 = 43531$

Hence, the required sequence is 3, 23, 229, 2869, 43531, ...

(iii)
$$a_n = \frac{1}{2^n} + \frac{1}{3^n}$$

Solution: To construct the required sequence put n = 1, 2, 3, 4, ... in $a_n = \frac{1}{2^n} + \frac{1}{3^n}$.

Values of n	Terms of required sequence
For $n = 1$	$\frac{1}{2^1} + \frac{1}{3^1} = \frac{1}{2} + \frac{1}{3} = \frac{3+2}{6} = \frac{5}{6}$
For $n = 2$	$\frac{1}{2^2} + \frac{1}{3^2} = \frac{1}{4} + \frac{1}{9} = \frac{9+4}{36} = \frac{13}{36}$
For $n = 3$	$\frac{1}{2^3} + \frac{1}{3^3} = \frac{1}{8} + \frac{1}{27} = \frac{27+8}{216} = \frac{35}{216}$
For $n = 4$	$\frac{1}{2^4} + \frac{1}{3^4} = \frac{1}{16} + \frac{1}{81} = \frac{81 + 16}{1296} = \frac{97}{1296}$
For $n = 5$	$\frac{1}{2^5} + \frac{1}{3^5} = \frac{1}{32} + \frac{1}{243} = \frac{243 + 32}{7776} = \frac{275}{7776}$

Hence, the required sequence is $\frac{5}{6}$, $\frac{13}{36}$, $\frac{35}{216}$, $\frac{97}{1296}$, $\frac{275}{7776}$,...

$$(iv) \qquad a_n = n^n + 2^n$$

Publishing House

Solution: To construct the required sequence put n = 1, 2, 3, 4, ... in $a_n = n^n + 2^n$

Values of n	Terms of required sequence
For $n = 1$	$(1)^1 + 2^1 = 1 + 2 = 3$
For $n = 2$	$(2)^2 + 2^2 = 4 + 4 = 8$
For $n = 3$	$(3)^3 + 2^3 = 27 + 8 = 35$
For $n = 4$	$(4)^4 + 2^4 = 256 + 16 = 272$
For $n = 5$	$(5)^5 + 2^5 = 3125 + 32 = 3157$

Hence, the required sequence is 3, 8, 35, 272, 3157, ...

(v)
$$a_n = 3 \cdot 2^{3n}$$

Solution: To construct the required sequence put n = 1, 2, 3, 4, ... in $a_n = 3 \cdot 2^{3n}$

Values of n	Terms of required sequence	
For $n = 1$	$3 \times 2^{3 \times 1} = 3 \times 2^3 = 3 \times 8 = 24$	
For $n = 2$	$3 \times 2^{3 \times 2} = 3 \times 2^6 = 3 \times 64 = 192$	
For $n = 3$	$3 \times 2^{3 \times 3} = 3 \times 2^9 = 3 \times 512 = 1536$	
For $n = 4$	$3 \times 2^{3 \times 4} = 3 \times 2^{12} = 3 \times 4096 = 12288$	
For $n = 5$	$3 \times 2^{3 \times 5} = 3 \times 2^{15} = 3 \times 32768 = 98304$	

Hence, the required sequence is 24, 192, 1536, 12288, 98304, ...

(vi) $a_n = n^3 - 1$

Solution: To construct the required sequence put n = 1, 2, 3, 4, ... in $a_n = n^3 - 1$

Values of n	Terms of required sequence
For $n = 1$	$(1)^3 - 1 = 1 - 1 = 0$
For $n = 2$	$(2)^3 - 1 = 8 - 1 = 7$
For $n = 3$	$(3)^3 - 1 = 27 - 1 = 26$
For $n = 4$	$(4)^3 - 1 = 64 - 1 = 63$
For $n = 5$	$(5)^3 - 1 = 125 - 1 = 124$

Hence, the required sequence is 0, 7, 26, 63, 124, ...

(vii) $a_n = \frac{1}{n} + \frac{1}{n+1} + \frac{1}{n+2}$

Solution: To construct the required sequence put n = 1, 2, 3, 4, ... in $a_n = \frac{1}{n} + \frac{1}{n+1} + \frac{1}{n+2}$.

Values of n	Terms of required sequence
For $n = 1$	$\frac{1}{1} + \frac{1}{1+1} + \frac{1}{1+2} = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} = \frac{6+3+2}{6} = \frac{11}{6}$
For $n = 2$	$\frac{1}{2} + \frac{1}{2+1} + \frac{1}{2+2} = \frac{1}{2} + \frac{1}{3} + \frac{1}{4} = \frac{6+4+3}{12} = \frac{13}{12}$
For $n = 3$	$\frac{1}{3} + \frac{1}{3+1} + \frac{1}{3+2} = \frac{1}{3} + \frac{1}{4} + \frac{1}{5} = \frac{20 + 15 + 12}{60} = \frac{47}{60}$
For $n = 4$	$\frac{1}{4} + \frac{1}{4+1} + \frac{1}{4+2} = \frac{1}{4} + \frac{1}{5} + \frac{1}{6} = \frac{15+12+10}{60} = \frac{37}{60}$
For $n = 5$	$\frac{1}{5} + \frac{1}{5+1} + \frac{1}{5+2} = \frac{1}{5} + \frac{1}{6} + \frac{1}{7} = \frac{42+35+30}{9210} = \frac{107}{210}$

Hence, the required sequence is $\frac{11}{6}$, $\frac{13}{12}$, $\frac{47}{60}$, $\frac{37}{60}$, $\frac{107}{210}$,...

(viii) $a_n = n^2 - 5n + 6$

```
Solution: To construct the required sequence put n = 1, 2, 3, 4, ... in a_n = n^2 - 5n + 6
```

Values of n	Terms of required sequence
For $n = 1$	$(1)^2 - 5(1) + 6 = 1 - 5 + 6 = 2$
For $n = 2$	$(2)^2 - 5(2) + 6 = 4 - 10 + 6 = 0$
For $n = 3$	$(3)^2 - 5(3) + 6 = 9 - 15 + 6 = 0$
For $n = 4$	$(4)^2 - 5(4) + 6 = 16 - 20 + 6 = 2$
For $n = 5$	$(5)^2 - 5(5) + 6 = 25 - 25 + 6 = 6$

Hence, the required sequence is 2, 0, 0, 2, 6, ...